7 cách giải phương trình bậc hai đơn giản, hiệu quả

7 cách giải phương trình bậc hai đơn giản, hiệu quả


7 cách giải phương trình bậc hai đơn giản, hiệu quả

Posted: 19 Apr 2022 04:42 AM PDT

Mến chào tất cả các bạn, hôm này mình sẽ hướng dẫn cho các bạn cách giải phương trình bậc hai bất kì bằng 7 cách khác nhau. Tha hồ cho các bạn chọn lựa.

Mỗi một cách sẽ có một số ưu điểm và khuyết điểm riêng, tùy thuộc vào phương trình cụ thể mà chúng ta sẽ cân nhắc lựa chọn sử dụng cho phù hợp. Hãy linh hoạt nha các bạn !

Trong 7 cách này có cách chỉ có thể áp dụng cho phương trình bậc hai, có cách có thể áp dụng cho phương trình bậc 2, 3, 4. Đặc biệt, có cách có thể áp dụng cho phương trình bậc n.

Okay, ngay bây giờ chúng ta cùng tìm hiểu thôi nào …

Mục Lục Nội Dung

I. Định nghĩa phương trình bậc hai

Phương trình bậc hai là phương trình có dạng $ax^2+bx+c=0$ với điều kiện là $a \neq 0$

Phương trình $x^2+2x-3=0$ là một phương trình bậc hai

II. 7 cách giải phương trình bậc hai

#1. Tính biệt thức Delta

Đây là phương pháp được nhiều người sử dụng nhất, việc áp dụng rất đơn giản, bạn chỉ cần nhớ công thức là được thôi.

Lời Giải:

$\Delta=b^2-4.a.c=2^2-4.1.(-3)=16$

Vì $\Delta>0$ nên phương trình đã cho có hai nghiệm phân biệt:

  • $x_1=\frac{-b+\sqrt{\Delta}}{2.a}=\frac{-2+\sqrt{16}}{2.1}=1$
  • $x_2=\frac{-b-\sqrt{\Delta}}{2.a}=\frac{-2-\sqrt{16}}{2.1}=-3$

=> Vậy phương trình đã cho có hai nghiệm phân biệt là 1, -3

Chú ý:

  • $\Delta=0$ thì phương trình có nghiệm kép $x_1=x_2=\frac{-b}{2a}$
  • $\Delta<0$ thì phương trình vô nghiệm

#2. Tính biệt thức Delta'

Phương pháp này nên được sử dụng khi b là một số nguyên chẵn, tức là b có dạng $b=2b'$

Phương pháp này rất có ích khi các hệ số a, b, c có giá trị lớn.

Lời Giải:

Dễ thấy $b'=\frac{b}{2}$ hay $b'=\frac{2}{2}=1$

$\Delta'=b'^2-a.c=1^2-1.(-3)=4$

Vì $\Delta' > 0$ nên phương trình đã cho có hai nghiệm phân biệt

  • $x_1=\frac{-b+\sqrt{\Delta'}}{2}=\frac{-1+\sqrt{4}}{1}=1$
  • $x_2=\frac{-b-\sqrt{\Delta'}}{2}=\frac{-1-\sqrt{4}}{1}=-3$

Vậy phương trình đã cho có hai nghiệm phân biệt là 1, -3

Chú ý:

  • $\Delta'=0$ thì phương trình có nghiệm kép $x_1=x_2=\frac{-b'}{a}$
  • $\Delta'<0$ thì phương trình vô nghiệm

#3. Hệ quả của định lý Viète

Phương pháp này nếu áp dụng được sẽ giúp chúng ta tiết kiệm được khá nhiều thời gian và công sức để giải bài, tuy nhiên việc áp dụng trong thực tế khá hạn chế.

Lời Giải:

Vì $a+b+c=0$ hay $1+2+(-3)=0$ nên phương trình đã cho có một nghiệm là 1 và nghiệm còn lại là $\frac{c}{a}=\frac{-3}{1}=-3$

=> Vậy phương trình đã cho có hai nghiệm phân biệt là 1, -3

Chú ý: Nếu $a-b+c=0$ thì phương trình có một nghiệm là -1 và nghiệm còn lại là $-\frac{c}{a}$

#4. Nhẩm nghiệm

Trước hết các bạn nên nhớ đa thức $f(x)=ax^2+bx+c$ với điều kiện $a \neq 0$ và $a, b, c$ là những số nguyên

  • Nếu có nghiệm nguyên thì những nghiệm nguyên này phải là ước của c
  • Nếu có nghiệm hữu tỉ $\frac{p}{q}$ thì p phải là ước của c và q phải là ước của a

Thực ra phương pháp này là trường hợp mở rộng của phương pháp hệ quả của định lý Viète bên trên.

Lời Giải:

Vì $a=1, b=2, c=-3$ là những số nguyên nên chúng ta có thể áp dụng phương pháp này:

Đặt $f(x)=x^2+2x-3$

-3 có các ước -1, 1, -3, 3

Nếu phương trình có nghiệm nguyên thì chỉ có thể là các số -1, 1, -3, 3

  • $f(-1)=(-1)^2+2(-1)-3=-4 \neq 0$ suy ra -1 không là nghiệm của phương trình đã cho
  • $f(1)=(1)^2+2(1)-3=0$ suy ra 1 là nghiệm của phương trình
  • $f(-3)=(-3)^2+2(-3)-3=0$ suy ra -3 là nghiệm của phương trình

=> Vậy phương trình đã cho có hai nghiệm phân biệt là 1, -3

Chú ý: Vì phương trình bậc hai có tối đa hai nghiệm nên mình không cần kiểm tra 3 (3 chắc chắn không phải là nghiệm của phương trình đã cho)

#5. Phương pháp đồ thị

Phương pháp đồ thị có thể áp dụng được cho phương trình bậc 2, 3 và 4. Điều kiện là bạn phải vẽ được đồ thị của chúng.

Ngoài ra, phương pháp này chỉ khả dụng khi nghiệm là những số nguyên.

Lời Giải:

Phương trình đã cho tương được với $x^2=-2x+3$

Đặt $f(x)=x^2$ và $g(x)=-2x+3$

Vẽ f(x)g(x) trên cùng một hệ trục tọa độ.

cach-giai-phuong-trinh-bac-hai (1)

Hoành độ giao điểm của đồ thị hàm số f(x)g(x) chính là nghiệm của phương trình đã cho.

Quan sát đồ thị ta dễ dàng nhận thấy hoành độ của hai giao điểm lần lượt là 1-3

Dự đoán 1 và -3 là nghiệm của phương trình

Thay 1 và -3 lần lượt vào phương trình đã cho $1^2+2.1-3=0$ và $(-3)^2+2.(-3)-3=0$ (thỏa mãn)

=> Vậy phương trình đã cho có hai nghiệm phân biệt là 1, -3

Chú ý: Ở đây mình chọn cách này để học sinh Trung học cơ sở vẫn có thể hiểu được. Trường hợp bạn có thể vẽ được đồ thị của hàm số bậc hai dạng đầy đủ tức $ax^2+bx+c$ thì bạn không cần phải vẽ hai đồ thị.

Lúc bấy giờ hoành độ giao điệm của đồ thị với trực hoành chính là nghiệm của phương trình.

cach-giai-phuong-trinh-bac-hai (2)

#6. Phương pháp máy tính CASIO fx-580VN X

Như mình đã nói bên trên, phương pháp này chỉ nên sử dụng khi cần kiểm tra kết quả hoặc làm bài kiểm tra / bài thi trắc nghiệm

Lời Giải:

Bước 1. Chọn phương thức tính toán Equation / Func

cach-giai-phuong-trinh-bac-hai (3)

Bước 2. Chọn Polynomial

cach-giai-phuong-trinh-bac-hai (4)

Bước 3. Chọn bậc 2 (vì chúng ta đang giải phương trình bậc 2)

cach-giai-phuong-trinh-bac-hai (5)

Bước 4. Lần lượt nhập các hệ số …

cach-giai-phuong-trinh-bac-hai (6)

Bước 5. Nhấn phím = ta thu được nghiệm thứ nhất, tiếp tục nhấn phím = ta thu được nghiệm thứ 2

cach-giai-phuong-trinh-bac-hai (7)

cach-giai-phuong-trinh-bac-hai (8)

Nếu tiếp tục nhấn phím = ta sẽ thu được hoành độ và trung độ của điểm cực tiểu.

Chú ý: Nhắc lại lần nữa, phương pháp này có thể tìm được nghiệm của phương trình bậc 2, 3 và 4 nha các bạn.

cach-giai-phuong-trinh-bac-hai (8)

cach-giai-phuong-trinh-bac-hai (9)

#7. Phương pháp biến đổi tổng quát

Phương pháp này chủ yếu để rèn luyện khả năng tư duy, tính toán, tìm nghiệm trong trường hợp tổng quát, biện luận nghiệm, …

Lời Giải:

$x^2+2x-3=0 \Leftrightarrow \left(\frac{x^2}{x}+\frac{2x}{2x}\right)^2-\left(\frac{2x}{2x}\right)^2-3=0 \Leftrightarrow (x+1)^2-(1)^2-3=0 \Leftrightarrow (x+1)^2=4$

$\Leftrightarrow \sqrt{(x+1)^2}= \sqrt{4} \Leftrightarrow |x+1|=2$

$\Leftrightarrow \left[\begin{array}{}x+1=2 \\ x+1=-2 \end{array}\right. \Leftrightarrow \left[\begin{array}{}x=1 \\ x=-3 \end{array}\right.$

Chú ý:

  • $x=0$ không là nghiệm của phương trình
  • Cẩn thận sai sót khi $a \neq 1$

III. Lời kết

Vâng, trên đây là 7 cách giải phương trình bậc 2 mà mình đã tổng hợp lại cho các bạn tiện theo dõi. Hãy linh hoạt để áp dụng, nó sẽ giúp bạn tiết kiệm rất nhiều thời gian làm bài tập đấy.

  • Nếu là một phương trình bậc 2 bất kỳ thì bạn nên ưu tiên sử dụng phương pháp 1.
  • Nếu rơi vào các trường hợp đặc biệt thì ưu tiên sử dụng phương pháp 2, 3 và 4.
  • Phương pháp đồ thị chỉ nên sử dụng khi cần biện luận nghiệm của phương trình.
  • Phương pháp sử dụng máy tính Casio chỉ nên sử dụng để kiểm tra kết quả.
  • Phương pháp 3 và 4 có thể áp dụng tương tự được cho phương trình bậc n.

Hi vọng là bài viết này sẽ hữu ích với bạn. Xin chào tạm biệt và hẹn gặp lại các bạn trong những bài viết tiếp theo !

Đọc thêm:

CTV: Nhựt Nguyễn – Blogchiasekienthuc.com

Bài viết đạt: 5/5 sao - (Có 1 lượt đánh giá)

Note: Bài viết này hữu ích với bạn chứ? Đừng quên đánh giá bài viết, like và chia sẻ cho bạn bè và người thân của bạn nhé !

Adblock test (Why?)

5 phương pháp giải hệ hai phương trình bậc nhất hai ẩn

Posted: 19 Apr 2022 04:40 AM PDT

Xin chào tất cả các bạn, hôm này mình sẽ hướng dẫn cho các bạn 5 cách giải hệ hai phương trình bậc nhất hai ẩn, nắm được 5 phương pháp này thì bạn sẽ không phải "ngại" bất kỳ trường hợp nào cả.

Cụ thể thì chúng ta sẽ có: Phương pháp cộng, phương pháp thế, phương pháp đồ thị, phương pháp cao cấp (ma trận nghịch đảo, định thức) và phương pháp sử dụng máy tính CASIO.

Trong đó, 3 phương pháp đầu tiên là dành cho học sinh Trung học, phương pháp thứ tư dành cho sinh viên, còn riêng phương pháp sử dụng máy tính CASIO mang tính chất hỗ trợ, kiểm tra kết quả là chính.

Mục Lục Nội Dung

I. Định nghĩa về hệ hai phương trình bậc nhất hai ẩn

Hệ hai phương trình bậc nhất 2 ẩn có dạng $\left\{\begin{array}{ll}ax+by&=c \\ a'x+b'y&=c'\end{array}\right.$

  • $x, y$ là 2 ẩn
  • $a, b, c, a', b', c'$ là các số thực.

Chẳng hạn $\left\{\begin{array}{ll}2x+y&=4 \\ x-y&=-1\end{array}\right.$ là hệ hai phương trình bậc nhất hai ẩn

#1. Sử dụng phương pháp cộng

Phương pháp này nên sử dụng khi hệ phương trình có $a+a'=0$ hoặc $b+b'=0$

Quan sát hệ phương trình đã cho ta thấy $b+b'=0$ cụ thể $1+(-1)=0$

Lời Giải:

$\left\{\begin{array}{ll}2x+y&=4 \\ x-y&=-1\end{array}\right.$

$\Leftrightarrow \left\{\begin{array}{ll}3x&=3 \\ x-y&=-1\end{array}\right. \Leftrightarrow \left\{\begin{array}{ll}x&=1 \\ x-y&=-1\end{array}\right. \Leftrightarrow \left\{\begin{array}{ll}x&=1 \\ 1-y&=-1\end{array}\right. \Leftrightarrow \left\{\begin{array}{ll}x&=1 \\ y&=2\end{array}\right.$

Vậy nghiệm của hệ phương trình đã cho là (1; 2)

#2. Phương pháp thế

  • Phương trình có hệ số càng đơn giản thì lúc biểu diễn x theo y hoặc y theo x sẽ càng dễ dàng
  • Ẩn nào có hệ số bằng 1 thì ưu tiên biểu diễn ẩn đó theo ẩn còn lại

Đối với hệ phương trình này mình sẽ chọn phương trình thứ nhì $x-y=-1$ và biểu diễn x theo y

Lời Giải:

$\left\{\begin{array}{ll}2x+y&=4 \\ x-y&=-1\end{array}\right.$

$\Leftrightarrow \left\{\begin{array}{ll}2x+y&=4 \\ x&=-1+y\end{array}\right. \Leftrightarrow \left\{\begin{array}{ll}2(-1+y)+y&=4 \\ x&=-1+y\end{array}\right. \Leftrightarrow \left\{\begin{array}{ll}y&=2 \\ x&=-1+y\end{array}\right. \Leftrightarrow \left\{\begin{array}{ll}y&=2 \\ x&=1 \end{array}\right.$

=> Vậy nghiệm của hệ phương trình đã cho là (1; 2)

#3. Phương pháp đồ thị

Phương pháp đồ thị chỉ nên sử dụng khi các hệ số là những số nguyên nha các bạn.

Lời Giải:

Gọi hai đường thẳng xác định bởi hai phương trình trong hệ đã cho lần lượt là $(d): 2x+y=4$ và $(d'): x-y=-1$

Vẽ (d)(d') trên cùng một hệ trục tọa độ ta thấy chúng cắt nhau tại một điểm $M=(1; 2)$ duy nhất.

5-phuong-phap-giai-he-hai-phuong-trinh-bac-nhat-hai-an (1)

Dự đoán (1; 2) là nghiệm của hệ phương trình đã cho.

Thay $x=1, y=2$ vào hệ phương trình $\left\{\begin{array}{ll}2.1+2&=4 \\ 1-2&=-1\end{array}\right.$

Ta thấy (1; 2) thỏa mãn => Vậy nghiệm của hệ phương trình đã cho là (1; 2)

#4. Phương pháp cao cấp

Đặt $A=\left(\begin{array}{ll}a&b \\ a'&b'\end{array}\right)$

Phương pháp này chỉ có thể sử dụng khi $|A| \neq 0$

4.1. Ma trận nghịch đảo

Dễ thấy $A=\left(\begin{array}{cc}2&1 \\ 1&-1\end{array}\right)$

Vì $|A|=2(-1)-1.1=-3 \neq 0$ nên A khả nghịch

Ma trận nghịch đảo của ma trận A sẽ bằng $A^{-1}=\left(\begin{array}{cc}\frac{1}{3}&\frac{1}{3} \\ \frac{1}{3}&-\frac{2}{3}\end{array}\right)$

Suy ra $\left(\begin{array}{}x\\y\end{array}\right)=\left(\begin{array}{cc}\frac{1}{3}&\frac{1}{3} \\ \frac{1}{3}&-\frac{2}{3}\end{array}\right) \left(\begin{array}{}4\\-1\end{array}\right) \Leftrightarrow \left(\begin{array}{}x\\y\end{array}\right) =\left(\begin{array}{}1\\2\end{array}\right)$

=> Vậy nghiệm của hệ phương trình đã cho là (1; 2)

4.2. Định thức

Dễ thấy $A=\left(\begin{array}{cc}2&1 \\ 1&-1\end{array}\right)$

Vì $|A|=2(-1)-1.1=-3 \neq 0$ nên hệ phương trình đã cho có một nghiệm duy nhất

  • $A_1=\left(\begin{array}{cc}4&1 \\ -1&-1\end{array}\right) \Rightarrow |A_1|=-3$
  • $A_2=\left(\begin{array}{cc}2&4 \\ 1&-1\end{array}\right) \Rightarrow |A_2|=-6$

Suy ra $x=\frac{|A_1|}{|A|}=\frac{-3}{-3}=1$ và $y=\frac{|A_2|}{|A|}=\frac{-6}{-3}=2$

=> Vậy nghiệm của hệ phương trình đã cho là (1; 2)

#5. Phương pháp máy tính CASIO fx-580VN X

Bước 1. Chọn phương thức tính toán Equation / Func

5-phuong-phap-giai-he-hai-phuong-trinh-bac-nhat-hai-an (2)

Bước 2. Chọn Simul Equation

5-phuong-phap-giai-he-hai-phuong-trinh-bac-nhat-hai-an (3)

Bước 3. Nhập số 2

5-phuong-phap-giai-he-hai-phuong-trinh-bac-nhat-hai-an (4)

Bước 4. Nhập số các hệ số …

5-phuong-phap-giai-he-hai-phuong-trinh-bac-nhat-hai-an (5)

Bước 5. Nhấn phím = => tiếp tục nhấn phím =

5-phuong-phap-giai-he-hai-phuong-trinh-bac-nhat-hai-an (6)

=> Vậy nghiệm của hệ phương trình đã cho là (1; 2)

5-phuong-phap-giai-he-hai-phuong-trinh-bac-nhat-hai-an (7)

II. Lời kết

Okay, trên đây là 5 phương pháp giải hệ hai phương trình bậc nhất hai ẩn mà mình đã tổng hợp lại.

Tùy thuộc vào hệ phương trình cụ thể mà chúng ta sẽ cân nhắc lựa chọn phương pháp cho phù hợp nhất.

  • Phương pháp cộng và phương pháp thế là 2 phương pháp bạn nên ưu tiên sử dụng.
  • Phương pháp đồ thị sử dụng khá hạn chế vì phương pháp này chỉ khả dụng khi nghiệm có giá trị nguyên.
  • Phương pháp cao cấp chỉ sử dụng được khi hệ phương trình có nghiệm duy nhất.
  • Còn phương pháp sử dụng máy tính CASIO chỉ nên sử dụng để kiểm tra lại kết quả.

Hi vọng những kiến thức mình chia sẻ trong bài hướng dẫn này sẽ hữu ích với bạn. Xin chào tạm biệt và hẹn gặp lại các bạn trong những bài viết tiếp theo !

Đọc thêm:

CTV: Nhựt Nguyễn – Blogchiasekienthuc.com

Bài viết đạt: 5/5 sao - (Có 1 lượt đánh giá)

Note: Bài viết này hữu ích với bạn chứ? Đừng quên đánh giá bài viết, like và chia sẻ cho bạn bè và người thân của bạn nhé !

Adblock test (Why?)

Tính khoảng cách giữa 2 đường thẳng chéo nhau bằng CASIO

Posted: 19 Apr 2022 04:37 AM PDT

Xin chào tất cả các bạn, hôm nay mình sẽ hướng dẫn các bạn cách tính khoảng cách giữa hai đường thẳng chéo nhau.

Về cơ bản thì chúng ta sẽ có 2 hướng để tiếp cận: Một là dựa vào tích có hướng (note) và tích vô hướng, hai nữa là dựa vào ma trận.

Trong bài viết này mình sẽ tiếp cận theo hướng thứ 2, tức là dựa vào ma trận. Cụ thể hơn là ma trận $2 \times 2$ và $3 \times 3$

Việc tiếp cận theo hướng này sẽ gây ra chút khó khăn cho các bạn học sinh, tuy nhiên trắc nghiệm đang là xu hướng và máy tính CASIO ngày càng có nhiều tính năng hữu ích hơn => vậy nên khó khăn trên sẽ không hề đáng ngại phải không nào.

Mục Lục Nội Dung

#1. Công thức tính khoảng cách giữa hai đường thẳng chéo nhau

Trong không gian $Oxyz$ cho hai đường thẳng chéo nhau $(d)$ và $(d')$. Tính khoảng cách giữa hai đường thẳng trên biết …

  • $(d)$ đi qua điểm $M_0=(x_0; y_0; z_0)$ và có véc-tơ chỉ phương $\vec{u}=(a_1; b_1; c_1)$
  • $(d')$ đi qua điểm $M_0'=(x_0'; y_0'; z_0')$ và có véc-tơ chỉ phương $\vec{u'}=(a_1'; b_1'; c_1')$

Khoảng cách giữa hai đường thẳng $(d)$ và $(d')$ được xác định bởi công thức:

$\frac{\left|\left|\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_1′ & b_1′ & c_1′ \\ x_0′-x_0 & y_0′-y_0 & z_0′-z_0 \end{array}\right|\right|}{\sqrt{\left|\begin{array}{ll} b_1 & c_1 \\ b_1′ & c_1′ \end{array}\right|^2+\left|\begin{array}{ll} c_1 & a_1 \\ c_1′ & a_1′ \end{array}\right|^2+\left|\begin{array}{ll} a_1 & b_1 \\ a_1′ & b_1′ \end{array}\right|^2}}$

cach-tinh-khoang-cach-giua-hai-duong-thang-cheo-nhau (1)

#2. Tìm hiểu thêm về cách chứng minh công thức

cach-tinh-khoang-cach-giua-hai-duong-thang-cheo-nhau (2)

Gọi V là thể tích của hình hộp được tạo bởi $\vec{u}, \vec{u'}, \overrightarrow{M_0M_0′}$

Lúc bấy giờ V được tính theo công thức $[\vec{u}; \vec{u'}] \cdot \overrightarrow{M_0M_0′}=\left|\left|\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_1′ & b_1′ & c_1′ \\ x_0′-x_0 & y_0′-y_0 & z_0′-z_0 \end{array}\right|\right|$

Gọi $S$ là diện tích của hình bình hành tạo bởi $\vec{u}, \vec{u'}$

Lúc bấy giờ S được tính theo công thức $[\vec{u}; \vec{u'}]=\sqrt{\left|\begin{array}{ll} b_1 & c_1 \\ b_1′ & c_1′ \end{array}\right|^2+\left|\begin{array}{ll} c_1 & a_1 \\ c_1′ & a_1′ \end{array}\right|^2+\left|\begin{array}{ll} a_1 & b_1 \\ a_1′ & b_1′ \end{array}\right|^2}$

=> Suy ra chiều của $h$ của hình hộp cũng chính là khoảng cách giữa hai đường thẳng chéo nhau và $h=\frac{V}{S}$

#3. Cách tính định thức của ma trận

3.1. Ma trận 2 x 2

Định thức của ma trận $A=\left(\begin{array}{ll}a&b\\c&d\end{array}\right)$ sẽ được tính theo công thức $a.d-c.b$

Chú ý: Định thức của ma trận A thường được kí hiệu là |A| hoặc Det(A)

3.2. Ma trận 3 x 3

Định thức của ma trận $B=\left(\begin{array}{lll}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{array}\right)$ sẽ được tính theo công thức

$a_{11}\left|\begin{array}{ll}a_{22}&a_{23}\\a_{32}&a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21}&a_{23}\\a_{31}&a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21}&a_{22}\\a_{31}&a_{32}\end{array}\right|$

#4. Ví dụ minh họa

Tính khoảng cách giữa hai đường thẳng chéo nhau $(d):\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-2}$ và $(d'):\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{-2}$

cach-tinh-khoang-cach-giua-hai-duong-thang-cheo-nhau (3)

Lời Giải:

Dễ thấy …

  • $M_0=(0; 1; -1)$ và $\vec{u}=(2; 1; -2)$ lần lượt là điểm đi qua và véc-tơ chỉ phương của đường thẳng (d)
  • $M_0'=(1; 2; 3)$ và $\vec{u'}=(1; 2; -2)$ lần lượt là điểm đi qua và véc-tơ chỉ phương của đường thẳng (d')

Suy ra $\overrightarrow{M_0M_0′}=(1; 1; 4)$

=> Vậy khoảng cách giữa $(d)$ và $(d')$ là:

$\frac{\left|\left|\begin{array}{lll} 2 & 1 & -2 \\ 1 & 2 & -2 \\ 1 & 1 & 4 \end{array}\right|\right|}{\sqrt{\left|\begin{array}{ll} 1 & -2 \\ 2 & -2 \end{array}\right|^{2}+\left|\begin{array}{ll} -2 & 2 \\ -2 & 1 \end{array}\right|^{2}+\left|\begin{array}{ll} 2 & 1 \\ 1 & 2 \end{array}\right|^{2}}}=\frac{16\sqrt{17}}{17}$

cach-tinh-khoang-cach-giua-hai-duong-thang-cheo-nhau (4)

#5. Thủ thuật tính nhanh bằng máy tính CASIO fx-580VN X

Bước 1. Chọn phương thức tính toán Matrix

cach-tinh-khoang-cach-giua-hai-duong-thang-cheo-nhau (5)

Bước 2. Lần lượt gán bốn ma trận vào MatA, MatB, MatCMatD

cach-tinh-khoang-cach-giua-hai-duong-thang-cheo-nhau (6)

cach-tinh-khoang-cach-giua-hai-duong-thang-cheo-nhau (7)

cach-tinh-khoang-cach-giua-hai-duong-thang-cheo-nhau (8)

cach-tinh-khoang-cach-giua-hai-duong-thang-cheo-nhau (9)

Bước 3. Tính giá trị biểu thức (Abs(Det(MatA))) ⨼(√((Det(MatB))2+(Det(MatC))2+(Det(MatD))2))

cach-tinh-khoang-cach-giua-hai-duong-thang-cheo-nhau (10)

Chú ý là phím phân số, là phím căn bậc hai

#6. Lời kết

Okay, đó là cách tính khoảng cách giữa hai đường thẳng chéo nhau mà theo mình là tối ưu nhất cho phần thi trắc nghiệm toán.

Nếu bạn là sinh viên thì cho dù câu hỏi được cho dưới dạng trắc nghiệm hay là tự luận đều không thành vấn đề, vì các bạn đã được học về ma trận trong chương trình Toán cao cấp hoặc Đại số tuyến tính.

Còn nếu bạn là học sinh và …

  • Câu hỏi được cho dưới dạng trắc nghiệm thì hãy áp dụng công thức hoặc thủ thuật máy tính CASIO cho mình.
  • Nếu câu hỏi được cho dưới dạng tự luận thì bạn hãy áp dụng công thức $\frac{|[\vec{u}; \vec{u'}] \cdot \overrightarrow{M_0M_0′} |}{|[\vec{u}; \vec{u'}]|}$

Hi vọng là bài viết sẽ hữu ích với bạn. Xin chào tạm biệt và hẹn gặp lại các bạn trong những bài viết tiếp theo !

CTV: Nhựt Nguyễn – Blogchiasekienthuc.com

Bài viết đạt: 5/5 sao - (Có 1 lượt đánh giá)

Note: Bài viết này hữu ích với bạn chứ? Đừng quên đánh giá bài viết, like và chia sẻ cho bạn bè và người thân của bạn nhé !

Adblock test (Why?)

0 nhận xét:

Đăng nhận xét